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Chiral recognition of secondary amines by using chiral crown
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Abstract—Chiral crown ether (S,S)-3 having a pseudo-24-crown-8 ring and chiral podand (R,R)-4 were prepared and both
exhibited good chiral recognition ability toward secondary amines, N-�-dimethylbenzylamine (15) and propranolol (16). © 2002
Published by Elsevier Science Ltd.

A number of chiral amines are known to possess potent
biological activities and many of them are employed as
important pharmaceuticals and their intermediates.
Since each enantiomer of these amines has, in principle,
different activities, it is an important issue to develop
convenient methods for optical resolution and determi-
nation of optical purity. Despite the abundance of
reports on chiral recognition of primary amines,1 to the
best of our knowledge, there are only two reports on
chiral recognition of secondary amines.2 Namely, Fuji
et al. reported that binaphthyl derivatives bound valine
derivatives with high enantiomer selectivity.3 Recently,
Steffeck et al. achieved enantiomeric separation of
racemic secondary amines with a liquid chromatogra-
phy stationary phase based on a chiral 18-crown-6.4 On

the other hand, we reported that the optically active
pseudo-18-crown-6 ethers like (S,S)-1 exhibited high
enantiomer selectivity toward primary amines.5 Accord-
ingly, we planned to prepare artificial receptors having
the same structural features as those of (S,S)-1 for the
enantiomer discrimination of secondary amines. The
salient features of (S,S)-1 involve (i) a phenolic hydroxy
group which binds neutral amines to form a salt com-
plex, (ii) a strong electron-withdrawing group attached
to the para position of the OH group, facilitating
binding with amines and (iii) phenyl groups introduced
to the right position of the macrocyclic framework as
chiral barriers. Since we anticipated that the ring size of
(S,S)-1 would be too small for binding a secondary
amine, we designed larger macrocycle (S,S)-3 and

Figure 1. The structures of hosts (S,S)-1–3 and (R,R)-4.
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acyclic host (R,R)-4. In the case of a podand type host,
however, introduction of a 2,4-dinitrophenylazo group
at the para position of the OH group resulted in the
product which existed as both azophenol and its tau-
tomeric hydrazone forms.6 Therefore, a nitro group is
used instead since its electron-withdrawing property is
same as that of a 2,4-dinitrophenylazo group.7 Pseudo-
18-crown-6 (S,S)-2 possessing the same ring size as that
of (S,S)-1 was prepared for comparison. The ring size
of pseudo-24-crown-8 (S,S)-3 is assumed to be almost
the same as that of dibenzo-24-crown-8 which is
reported to form a stable complex with a dibenzylam-
monium ion.8 Podand (R,R)-4 should have a larger
binding site than that of (S,S)-3 (Fig. 1).

The preparation of (S,S)-2, (S,S)-3 and (R,R)-4 was
carried out using diol 5 as a common intermediate as
shown in Scheme 1. Ring closure of (S,S)-59 with
diethylene glycol ditosylate under high dilution condi-
tion gave (S,S)-6. Reductive removal of the bromo
group of (S,S)-6 gave (S,S)-7, and its demethylation
afforded (S,S)-8. Nitration at the para position of the
OH group of (S,S)-8 gave (S,S)-2,11 pseudo-24-crown-8
(S,S)-312 (through (S,S)-9, (S,S)-10 and (S,S)-11) and
podand (R,R)-413 were prepared by essentially the same
procedure as that for the preparation of (S,S)-2, except
that R,R isomer of 5 was used as the starting material
for (R,R)-4 and the two OH groups of (R,R)-5 was first
protected by MOM groups to give (R,R)-12. Reduction
and deprotection gave (R,R)-13, which was subjected to
demethylation and nitration to furnish (R,R)-4.

In order to examine the binding ability of (S,S)-2,
(S,S)-3 and (R,R)-4 with secondary amines, N-methyl-
benzylamine (14) was selected as a guest. The enan-
tiomer selective complexation of (S,S)-3 and (R,R)-4
was studied with R and S enantiomers of N,�-dimethyl-
benzylamine (15) which has a methyl group at �-posi-
tion of 14 and propranolol (16) having a chiral center
at �-position of an amino group. The binding constants
for complexes of (S,S)-2 and (S,S)-3 with the amines
were determined by the non-linear least-squares curve
fitting method on the basis of the 1H NMR titration in
CDCl3 at 15°C. Because of the limited solubility of
(R,R)-4 in CDCl3, the binding constants for complexes
of (R,R)-4 with the amines were determined by the
Rose–Drago method on the basis of the UV–vis titra-
tion in CHCl3 at 15°C.14 The binding constants of the
hosts with 14, 15 and 16 and enantiomer selectivities of
the hosts toward 15 and 16 which are the ratio of
binding constants (KS/KR), are summarized in Table 1.
As shown in Table 1, the binding constant of pseudo-
24-crown-8 (S,S)-3 with 14 is three times as large as
that of pseudo-18-crown-6 (S,S)-2. Similarly, the bind-
ing constant of podand (R,R)-4 is eight times larger
than that of (S,S)-2. These results clearly exhibit that
the cavity of pseudo-18-crown-6 (S,S)-2 is too small for
a secondary amine, while pseudo-24-crown-8 (S,S)-3
and podand (R,R)-4 possess large binding sites enough
to include a secondary amine.15 Next, we investigated
chiral recognition abilities of the hosts toward amine
15. Since (S,S)-2 did not bind S and R enantiomers of
15 (K<1 M−1), we could not estimate the selectivity.
Thus introduction of a methyl group in the guest amine

Scheme 1. Reagents and conditions : (i) diethylene glycol ditosylate, NaH, 53% (n=1), tetraethylene glycol ditosylate, NaH, 36%
(n=3); (ii) 1. n-BuLi, then H2O, 62% (n=1), 62% (n=3); (iii) EtSNa, 91% (n=1), 86% (n=3); (iv) HNO3, NaNO2, 58% (n=1),
34% (n=3); (v) (CH3O)2CH2, LiBr, TsOH, 45%; (vi) 1. n-BuLi, then H2O, 2. 6N HCl, 53%; (vii) 1. EtSNa, 2. HNO3, NaNO2,
19%.
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Table 1. Binding constants and enantioselectivities in com-
plexations of (S,S)-2, (S,S)-3 and (R,R)-4 with 14, 15 and
16

(S,S)-2a (S,S)-3a (R,R)-4b

(1.4�0.2)×10 (4.6�0.1)×1014 (1.0�0.1)×102

15 �1KS (1.8�0.1)×10 (1.0�0.1)×102

�1 8.8�0.7KR (7.2�0.7)×1015
KS/KR15 – 2.0 1.4

16 KS – (5.3�0.1)×10 (2.3�0.1)×102

– (3.1�0.2)×10KR (3.7�0.5)×10216
– 1.716 0.6KS/KR

a Measured by 1H NMR spectroscopy (270 MHz) in CDCl3 at 15°C.
b Measured by UV–vis spectroscopy in CHCl3 at 15°C.

binding ability than pseudo-18-crown-6 (S,S)-2 toward
an achiral secondary amine and good enantiomer selec-
tivity toward chiral secondary amines which have a
chiral center at � or � position. The enantiomer selec-
tivity of (S,S)-3 and (R,R)-4 toward other chiral sec-
ondary amines and further modification of the host
structure are currently under investigation.
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